ADS

loading...

Monday, May 14, 2018

IMPACT OF GLOBAL WARMING

Impacts from the phenomenon known as global warming include environmental, social, and economic effects. Environmental impacts include sea-level rise, melting of the polar ice caps, and an average increase in temperature. These impacts are documented in the reports of the Intergovernmental Panel for Climate Change (IPCC), which commissions reports by scientists worldwide on the issue of climate change. The IPCC Report of 2007 is the first one that reflects scientific consensus that global warming is underway, and that it is primarily human induced. For example, human activities, such as fossil fuel burning, land-use changes, agricultural activity, and the production and use of halocarbons are among the factors causing climate change. The economic report by Nicholas Stern in 2007 highlights that climate change has potentially disastrous consequences for humanity.

Temperature Variability
Perhaps best known, is that temperature variability, specifically temperature increase, will be one of the effects of climate change. While the range of projections relating to temperature rise varies, the IPCC scenarios, using a range of climate models, predict overall a rise in globally-averaged surface temperature of 2.5–10 degrees F (1.4 to 5.8 degrees C) 1990– 2100. While at local and regional levels this figure will vary, at a global level it is roughly 2–10 times larger than the observed warming of the 20th century, and is unprecedented during at least the last 10,000 years, based on paleoclimatic data.
Changes in temperature and precipitation (rainfall) patterns have increased all around the world. In the United States, average temperatures have increased by roughly 1 degree F (0.6 degrees C) during the past century, and precipitation has increased by five to 10 percent. Alaska has sustained an average temperature increase of 4–7 degrees F (2–4 degrees C) in just the past 50 years. Temperature increase has also had a number of related effects, such as the increased melting of the summer Arctic sea ice. Since 1979, more than 20 percent of the polar ice cap has melted in response to increased surface and ocean temperatures. The oceans are warming. Global ocean temperature has risen by 0.18 degrees F (0.10 degrees C) from the surface to a depth of (2,297 ft.) 700 m. 1961–2003.
Warming of Water Masses
Key oceanic water masses are changing. Southern Ocean mode waters and Upper Circumpolar Deep Waters have warmed from the 1960s to about 2000. A similar, but weaker pattern of warming in the Gulf Stream and Kuroshio mode waters in the North Atlantic and North Pacific has been observed. Longterm cooling is observed in the North Atlantic subpolar gyre and in the central North Pacific.
Sea -Level Rise
Another predicted effect of climate change is an increase in sea level. Sea-level rise is caused by thermal expansion of the oceans, melting of glaciers and ice caps, melting of the Greenland and Antarctic ice sheets, and changes in terrestrial storage. Changes in sea level will be felt through increases in intensity and frequency of storm surges and coastal flooding; increased salinity of rivers, bays, and coastal aquifers resulting from saline intrusion; increased coastal erosion; loss of important mangroves and other wetlands (the exact response will depend on the balance between sedimentation and sea-level change); and impact on marine ecosystems such as coral reefs.
Sea-level rise is accelerating worldwide. Globally, 100 million people live within about 3.3 ft. (1 m.) of present day sea level. Eight to 10 million people live within 3.3 ft. (1 m.) of high tide in each of the unprotected river deltas of Bangladesh, Egypt, and Vietnam. IPCC reports estimate that the global average sea level rose at an average rate of .07 in. (1.8 mm.) per year 1961–2003, and within that period, the rate of rise was faster 1993–2003, about 0.12 in. (3.1 mm.) per year. Overall, the IPCC concludes there is high confidence that the rate of observed sea level rise has risen from the 19th to the 20th century. The total 20th century rise is estimated to be 0.55 ft. (0.17 m.) In 2001, IPCC projections were for a sea-level rise of between 3.5–34.6 in. (9–88 cm.) 1990–2100 and a global average surface temperature rise of between 2.5–10.4 degrees F (1.4 and 5.8 degrees C.). In 2007, IPCC projections based on different scenarios predict seal level rise from 0.01 to up to 0.02 in. (.18–.59 mm.) by 2099.
Toward the end of the 21st century, projected sealevel rise will affect low-lying coastal areas with large populations. The cost of adaptation could amount to at least five to 10 percent of Gross Domestic Product. Mangroves and coral reefs are projected to degrade further, with additional consequences for fisheries and tourism. Snowmelt runoff as a result of seal level rise will have major consequences. For example, one change will be a change from spring peak flows to late winter peaks in snowmelt-dominated regions. Many species, both aquatic and riparian (riverine) have evolved to take opportunity of the spring flows as a result of snowmelt. For example, some fish time their reproduction strategies specifically to avoid the stress of springtime flows. Changes in springtime flow regimes, or high winter flows associated with rain or snow events, can scour streambeds and destroy eggs. Trees that provide riparian habitat along rivers may find it harder to reproduce as they depend on high spring flows. Many species, such as salmon, already under pressure from other environmental impacts, will be further impacted by climate change. For example, higher temperatures and a reduced stream flow in the Columbia River Basin may be increasing the mortality of juvenile coho salmon; in some cases increased temperatures may be creating thermal barriers for the migration of adult salmon.
There are a number of associated events that are a result of climate change and will also have impacts on sea-level rise. For example, the Kangerdlugssuaq Glacier in Greenland is moving much faster, melting at a rate of 8.7 mi. (14 km.) a year in comparison to just 3.2 mi. (5 km.) a year in 1988. This loss will also have serious implications for sea-level rise, with some scientists predicting that within the next 100 years, ice cover in this region will completely disappear over summer and that species living within it, such as polar bears, will be threatened. The complete melting of the Greenland Ice Sheet and the West Antarctic Ice Sheet would lead to a contribution to sea-level rise of up to 23 ft. (7 m.) and about 16 ft. (5 m.), respectively.
Incidence and Severity of Storms
Increased incidence and frequency of storms is another predicted effect of climate change. For example, since 1996, the number of named tropical storms in the North Atlantic per year has increased by 40 percent, a figure considered extreme in the 1950s. Some research indicates that there is a link between higher sea-surface temperatures and storm frequency. Researchers have found that 1970–2004, warmer sea-surface temperature has been the major factor in the increase in category 4 and 5 hurricanes globally. Scientists have also shown that there is a strong correlation between sea temperature and annual hurricane power in three different hurricane basins in the North Atlantic, and two in the Pacific. Hurricane Katrina and the tsunami in Southeast Asia are both examples of the increased frequency and intensity of natural events that result from climate change.
Atmospheric Composition
Another effect of climate change is changes in atmospheric composition. It is possible to measure these changes, as the composition of air, prior to industrialization, is known from testing air bubbles frozen in ice cores from Antarctica. Since pre-industrial times, the concentration of CO2 within the atmosphere has risen from about 270–280 parts per million by volume (ppm) to over 360 ppm today. Moreover, CH4 has risen from about 700 parts per billion by volume (ppb) to over 1700 ppb, and N2O has increased from about 270 ppb to over 310 ppb. Halocarbons, substances that are not naturally present in the atmosphere, are now present in large amounts.

            This is important because changes within the atmosphere have disrupted the total energy budget of the planet. The balance between incoming, solar shortwave radiation, and the outgoing long-wave radiations has upset the normal radiative balance. This change is called radiative forcing. The Earth’s response to this phenomenon is to try to restore the balance by warming the lower atmosphere. In so doing, the surface temperature of the planet increases.
Source: Encyclopedia of Global Warming and Climate Change (Click Here)

No comments:

Post a Comment